Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
نویسندگان
چکیده
Meta-learning allows an intelligent agent to leverage prior learning episodes as a basis for quickly improving performance on a novel task. Bayesian hierarchical modeling provides a theoretical framework for formalizing meta-learning as inference for a set of parameters that are shared across tasks. Here, we reformulate the model-agnostic meta-learning algorithm (MAML) of Finn et al. (2017) as a method for probabilistic inference in a hierarchical Bayesian model. In contrast to prior methods for meta-learning via hierarchical Bayes, MAML is naturally applicable to complex function approximators through its use of a scalable gradient descent procedure for posterior inference. Furthermore, the identification of MAML as hierarchical Bayes provides a way to understand the algorithm’s operation as a meta-learning procedure, as well as an opportunity to make use of computational strategies for efficient inference. We use this opportunity to propose an improvement to the MAML algorithm that makes use of techniques from approximate inference and curvature estimation.
منابع مشابه
Fast Meta-Learning for Adaptive Hierarchical Classifier Design
We propose a new splitting criterion for a meta-learning approach to multiclass classifier design that adaptively merges the classes into a tree-structured hierarchy of increasingly difficult binary classification problems. The classification tree is constructed from empirical estimates of the Henze-Penrose bounds on the pairwise Bayes misclassification rates that rank the binary subproblems in...
متن کاملAn integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...
متن کاملMeta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory
In representational lifelong learning an agent aims to learn to solve novel tasks while updating its representation in light of previous tasks. Under the assumption that future tasks are ‘related’ to previous tasks, representations should be learned in such a way that they capture the common structure across learned tasks, while allowing the learner sufficient flexibility to adapt to novel aspe...
متن کاملEfficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
Hierarchical Bayesian networks and neural networks with stochastic hidden units are commonly perceived as two separate types of models. We show that either of these types of models can often be transformed into an instance of the other, by switching between centered and differentiable non-centered parameterizations of the latent variables. The choice of parameterization greatly influences the e...
متن کاملAlgorithmic improvements for variational inference
Variational methods for approximate inference in machine learning often adapt a parametric probability distribution to optimize a given objective function. This view is especially useful when applying variational Bayes (VB) to models outside the conjugate-exponential family. For them, variational Bayesian expectation maximization (VB EM) algorithms are not easily available, and gradient-based m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.08930 شماره
صفحات -
تاریخ انتشار 2018